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Abstract
We compare several high-order finite element
(FE) methods for solving the radial Schrödinger
and Dirac equations, in particular, spectral FEM
(uniform-p-FEM), p-FEM, h-FEM, and hp-FEM. All
methods provide a robust way of calculating all
eigenstates to machine precision. They differ in
the rate of convergence and whether a good initial
mesh is needed or not, as well as providing robust
error control.

Motivation
The need for an efficient solution to the radial Dirac
equation arises in the calculation of the equation
of state (EOS) and opacity of materials under ex-
treme conditions.
These calculations often rely on self-consistent
average-atom codes to compute the atomic struc-
ture for a representative atom in a plasma. For
plasmas at low densities and high temperatures, a
very large number of Rydberg states are accessible,
often requiring the calculation of principal quan-
tum numbers of 100 or higher.
This poses a challenge for the existing average-
atom models, since they have difficultly in resolv-
ing all the bound states just below the contin-
uum, and accurately computing the wave-function
of high-principal-quantum-number states near the
nucleus.

High-Order Methods
Finite element (FE) methods [2] partition the problem
domain into subdomains called "elements", and rep-
resent the desired solution as a linear combination of
piecewise polynomials defined within each element;
wherein h characterizes the element size and p, the poly-
nomial order.

• h-FEM increases accuracy by decreasing h

• p-FEM increases accuracy by increasing p

• hp-FEM increases accuracy by refining both h and
p simultaneously

Polynomial and strictly local basis → robust and nat-
urally parallel method for solution of large-scale PDE
problems, as in electronic structure [3].
hp-FEM has many favorable properties: exponential
convergence, automatic adaptivity (no a priori knowl-
edge needed), any geometry and boundary conditions,
and systematic error control.

Schrödinger Equation
Radial Schrödinger equation:
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Discretization in an FE basis produces a general-
ized eigenvalue problem of the form Ax = λBx.
Setting boundary term 1

2 [ρ
2R′(ρ)v(ρ)]a0 = 0 im-

poses R′(a) = 0 but no restriction on R at ρ = 0,
due to vanishing of ρ2. We impose R(a) = 0 by
restricting the FE basis and allow the natural BC
at ρ = 0: we solve for R(0) directly (note that in
general R(0) 6= 0).

Dirac Equation
Radial Dirac equations:
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Correspondence between the radial Schrödinger
and Dirac equation is:

ρ2R2(ρ) = P 2(ρ) +Q2(ρ)
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Hydrogen Atom (3 lowest states of Schrödinger equation for Z = 1)
Comparison of uniform-p-FEM, h-FEM (Romanowski [1]), p-FEM (two different meshes) and hp-FEM:
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(L) starts from logarithmic initial mesh, (U) starts from uniform initial mesh. Computational domain is [0, 100 a.u.].

Silver Atom (50 lowest states of Schrödinger equation for Z = 47)
Comparison of uniform-p-FEM (two different meshes), p-FEM and hp-FEM (domain [0, 150 a.u.]):
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Conclusions
• High-order adaptive FE methods provide a robust, vari-

ational alternative to conventional shooting methods,
finding all desired states simultaneously, with accuracy
and orthogonality approaching machine precision.

• High-order p-FEM and hp-FEM are superior to h-FEM
in atomic structure context.

• hp-FEM is the method of choice when little or no a pri-
ori information is available; however, in atomic-structure
context, much is known → high-order p-FEM can be
superior in practice (due to practical constraints on hp-
FEM mesh — further research is needed).

• Future: Extend present Schrödinger formulations to
Dirac equation and self-consistent calculations.
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Meshes for Error < 10−6Ha
Method (Hydrogen) h [a.u.] p

h-FEM (U) 1.56 - 25 6
un-p-FEM (L) 3.22 - 64.34 8
p-FEM (L) 3.22 - 64.34 5-11
p-FEM (U) 25 2-16
hp-FEM (U) 12.5 - 25 2-13

Method (Silver) h [a.u.] p

un-p-FEM 50 (L) 0.08 - 15.44 8
un-p-FEM 4 (L) 3.00 - 105.06 44
p-FEM (L) ∗ 3.00 - 105.06 33-49
hp-FEM (L) ∗ 3.00 - 52.53 19-49

∗ corresponds to 4.2 · 10−6 Ha accuracy
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